

Modulhandbuch

für den Masterstudiengang

Medizintechnik (M.Sc.)

SPO-Version ab: Wintersemester 2021

Sommersemester 2025

erstellt am 19.02.2025

von Daniela Stang

Fakultät Maschinenbau

Hinweise:

1. Die Angaben zum Arbeitsaufwand in der Form von ECTS-Credits in einem Modul in diesem Studiengang beruhen auf folgender Basis:

1 ECTS-Credit entspricht in der Summe aus Präsenz und Selbststudium einer durchschnittlichen Arbeitsbelastung von 30 Stunden (45 Minuten Lehrveranstaltung werden als 1 Zeitstunde gerechnet).

2. Erläuterungen zum Aufbau des Modulhandbuchs

Die Module sind nach Studienabschnitten unterteilt und innerhalb eines Abschnitts alphabetisch sortiert. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet. Die Beschreibung der Veranstaltungen folgt jeweils im Anschluss an das Modul. Durch Klicken auf das Modul oder die Veranstaltung im Inhaltsverzeichnis gelangt man direkt auf die jeweilige Beschreibung im Modulhandbuch.

3. Standard-Hilfsmittel (SHM)

Folgende Hilfsmittel sind bei allen Prüfungen zugelassen:

- Unbeschriebenes Schreibpapier (Name, Matrikelnummer und Modulbezeichnung dürfen vorab schon notiert werden)
- Schreibstifte aller Art (ausgenommen rote Stifte)
- Zirkel, Lineale aller Art, Radiergummi, Bleistiftspitzer, Tintenentferner
- Zugelassener Taschenrechner der Fakultät Maschinenbau (siehe Merkblatt "Zugelassene Hilfsmittel" auf der Fakultätshomepage), zu erwerben über die Fachschaft.

Ausnahmen von dieser Regel werden in der Spalte "Zugelassene Hilfsmittel" explizit angegeben.

<u>Verwendbarkeit der Module:</u> Alle Module sind studiengangspezifisch. Abweichungen sind in den Modulbeschreibungen im Feld "Studien- und Prüfungsleistung" vermerkt.

Modulliste

Pflichtmodule beider Schwerpunkte

Biomaterialien	
Biomaterialien	
Biomedizinische Modellbildung, Testung und Simulation mit Praktikum	1
Biomedizinische Modellbildung, Testung und Simulation mit Praktikum	
Masterarbeit mit Präsentation	
Mündliche Präsentation der Masterarbeit	
Schriftliche Ausarbeit	40
Regelwerke für Medizinprodukte	53
Regelwerke für Medizinprodukte	
Versuchstechnik und Datenanalyse mit Praktikum	
Versuchstechnik und Datenanalyse mit Praktikum	
Pflichtmodule Schwerpunkt "Forschung"	
Forschungsarbeit 1	2.
Forschungsarbeit 1	
Forschungsarbeit 2	
Forschungsarbeit 2	
Wahlpflichtmodule	
Angewandte Entwicklung von Medizinprodukten	
Angewandte Entwicklung von Medizinprodukten	
Dentale Biomaterialien	
Dentale Biomaterialien	
Digitale Produktentwicklung additiv gefertigter Medizinprodukte	
Digitale Produktentwicklung additiv gefertigter Medizinprodukte	
Innovationsmanagement	
Innovationsmanagement	
Kognitive Systeme	
Kognitive Systeme	
Korrosion und Degradation von Biomaterialien	
Korrosion und Degradation von Biomaterialien	
Numerische Strömungsberechnung	
Numerische Strömungsberechnung	
Optimierung	
Optimierung	
Polymere in der Medizintechnik	
Polymere in der Medizintechnik	
Vertiefung Qualitätsmanagement	
Vertiefung Qualitätsmanagement	60

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. o	oder Nr.
Angewandte Entwicklung von Medizinprodukten		AEM	
Modulverantwortliche/r	Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Verpflichtende Voraussetzungen		Y	
keine			
Empfohlene Vorkenntnisse			
Kenntnisse in der Konstruktion, CAD und Konstruktionsmet	hodik		

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Angewandte Entwicklung von	4 SWS	5
	Medizinprodukten		

Teilmodul		TM-Kurzbezeichnung
Angewandte Entwicklung von Medizinprodukten		AEM
(Applied Development of Medical Products)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Schratzenstaller	nur im Sommersemester	
Prof. Dr. Max Singh		
Lehrform		
Seminaristischer Unterricht bei fachwis	ssenschaftlichen Wahlpflichtm	odulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium		
60	90		

Studien- und Prüfungsleistung
siehe Wahlpflichtmodulkatalog Master Medizintechnik
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte und Qualifikationsziele

- Produktlebenszyklus
- Produktentwicklungsmodelle
- Methoden der Produktentwicklung
- Projektsteuerung
- Technische Dokumentation
- Phasen des Design Control in der Medizinprodukteentwicklung
- Vertiefte Anwendung von Konstruktionsmethoden: Planen, Konzipieren, Entwerfen, Ausarbeiten von Konzepten zu Aufgabenstellungen aus der Praxis
- Aufteilung der Gesamtfunktion in Teilfunktionen, intuitive und diskursive Findung von physikalischen Effekten zur Lösung der Teilfunktionen
- Gestaltung der physikalischen Effekte, Wirkfläche, Wirkbewegung, Variationsgesichtspunkte; Kombinationen von Teillösungen zu Gesamtlösungen
- Bewertung und Auswahl von Lösungen (technisch-wirtschaftliches Konstruieren, Nutzwertanalyse)
- Konstruktionsprojekt "Aufgabenstellung aus der Praxis" Vorauslegung, mechanisches Ersatzsystem, Belastungsverläufe, Werkstoffauswahl
- Anfertigen von Auslegungsrechnungen, Ausarbeitung und Bewertung von Variationen für eine zentrale Teilfunktion
- Anfertigen eines (Hand-)Entwurfs zur favorisierten Prinziplösung
- Aufbau eines 3D-CAD-Modells der favorisierten Lösung
- Durchführen von Festigkeitsnachweisen
- Produktdokumentation: Ableiten von Stücklisten, Baugruppen-, Roh- und Einzelteilzeichnungen aus dem CAD-Modell
- Anfertigung einer Konstruktionsbegründung und Montageanleitung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Konstruktionsmethoden, insbesondere in der Konzept- und Entwurfsphase anzuwenden (3)
- innovative Lösungskonzepte durch methodisches Vorgehen zu entwickeln (3)
- Konzepte und Entwürfe durch systematische Variation (Morphologischer Kasten) zu erstellen (3)
- Lösungsalternativen technisch-wirtschaftlich zu bewerten (3)
- Lösungskonzepte in Form einer Handskizze hinreichend detailliert zu beschreiben (3)
- die Machbarkeit eines Lösungskonzepts durch Vorauslegungsrechnungen und Simulationen sicherzustellen (3)
- ein 3D-CAD-Modell einer Baugruppe mit einem CAD-System aufzubauen (3)
- neue und bessere Produkte zu entwickeln, die sich durch h\u00f6here Qualit\u00e4t und/oder geringere Herstellkosten auszeichnen (3)
- Bauteile fertigungs-, montage-, festigkeits- werkstoffgerecht u. dgl. zu gestalten (3)
- den Entwicklungsprozess und das Ergebnis (Produkt) ausreichend detailliert zu beschreiben (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• das ingenieurmäßige Lösen von konstruktiven Aufgaben aus der industriellen Praxis anzuwenden (3)

- mit geringem Aufwand Projektstände, Zwischenergebnisse und Arbeitsergebnisse verständlich zu präsentieren (3)
- den Vorteil von Teamarbeit vor allem bei der Lösungssuche und der Bewertung von Lösungsvarianten zu nutzen (3)
- fachliche Problemlösungen zu entwickeln und diese im Diskurs mit theoretisch und methodisch fundierter Argumentation zu begründen (3)
- mit anderen Fachvertreterinnen und Fachvertretern sowie Fachfremden zu kommunizieren und zu kooperieren, um eine Aufgabenstellung verantwortungsvoll zu lösen (3)
- unterschiedliche Sichtweisen und Interessen anderer Beteiligter zu reflektieren und zu berücksichtigen (3)
- Arbeitsergebnisse standardisiert zu beschreiben, um so die Kommunikation im Unternehmen zu erleichtern (3)
- ein berufliches Selbstbild zu entwickeln, das sich an Zielen und Standards professionellen Handelns in vorwiegend außerhalb der Wissenschaft liegenden Berufsfeldern orientiert (3)
- die eigenen Fähigkeiten einzuschätzen, zu reflektieren und autonom sachbezogene Gestaltungs- und Entscheidungsfreiheiten zu nutzen (3)
- die Bedeutung der methodischen Vorgehensweise beim Lösen von technischen Problemen zu erkennen (3)
- das eigene berufliche Handeln mit theoretischem und methodischem Wissen zu begründen und es hinsichtlich alternativer Entwürfe zu reflektieren (3)

Angebotene Lehrunterlagen

Skript, Fachbücher, Normen, Kataloge, Exponate, Software

Lehrmedien

Overheadprojektor, Rechner/Beamer, Tafel, CAD-Arbeitsplatz, Berechnungsprogramme, Exponate, Internet, ggf. Exkursion zu Unternehmen oder Instituten in der Medizintechnikbranche

Literatur

- Fachbücher (werden je nach Aufgabenstellung in der Veranstaltung bekanntgegeben)
- VDI-Richtlinien 2222, 2221, 2225, 2206
- Roloff/Matek: Maschinenelemente Lehrbuch und Tabellenbuch
- Aufgabenstellung, Hinweise zur Anfertigung der Studienarbeit, Fachliteratur, Kataloge, Normen, Software

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. od	ler Nr.
Biomaterialien		BMA	
(Biomaterials)			
Modulverantwortliche/r	Fakultät		
Prof. Dr. Helga Hornberger	Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.		Schwerpunkt Pflichtmodul	5

Verpflichtende Voraussetzungen			
keine			
Empfohlene Vorkenntnisse	_		
keine			

Inhalte			
siehe Teilmodul			

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Biomaterialien	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Biomaterialien		ВМА
(Biomaterials)		
Verantwortliche/r	Fakultät	
Prof. Dr. Helga Hornberger	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Helga Hornberger	nur im Wintersemester	
Prof. Dr. Ulf Noster		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung	
Schriftliche Prüfung, 90 Minuten	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte und Qualifikationsziele

- Materialwissenschaft an Beispielen von Materialien und Komponenten, die in Medizinprodukten eingesetzt werden
- Biokompatibilität und Reaktionen des Körpers
- Zusammensetzung, Mikrostruktur, Struktur und Aufbau von Biomaterialien
- Eigenschaften von Biomaterialien, mechanische Eigenschaften und Korrosionsverhalten
- Zusammenhang zwischen Herstellung und Materialeigenschaften sowie Oberflächeneigenschaften einschließlich Sterilisationseffekte
- Typische Vertreter von inerten und degradierbaren Biomaterialien aus allen Werkstoffklassen
- Beschichtungen
- Beispiele von Implantatsystemen und -bauteilen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Zusammenhänge zwischen Mikrostruktur, Material- und Oberflächeneigenschaften und Herstellung verstehen und erläutern können (2)
- Aus Biomaterialien hergestellte Bauteile, die zu ersetzenden Funktionen sowie die Anforderungen, die an diese Bauteile gestellt werden, verstehen (3)

- Die wichtigsten Vertreter der Biomaterialien sowie die wichtigsten Werkstoffkennwerte (1) und ihre praktische Bedeutung kennen (2)
- Die wichtigsten Herstellungsmethoden kennen, um die Limitation im Einsatz zu verstehen und die Möglichkeit der Optimierung zu erkennen (3)
- Biomaterialien in diesem Kontext einordnen und im Dialog mit Werkstoffspezialisten Entscheidungen zur Materialanwendung oder Auswahl treffen können (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit Fachwörtern präzise und sorgfältig umzugehen (1)
- Mögliche Chancen und Risiken beim Einsatz von Materialien in Medizinprodukten zu verstehen (3)
- Die Bedeutung der Werkstoffe in Entwicklungen von Medizinprodukten wahrzunehmen und in der Praxis umzusetzen (3)

Angebotene Lehrunterlagen

Kurs E-Learning-Plattform pdf Folien aus der Vorlesung

Lehrmedien

Tafel, Rechner + Beamer, Exponate

Literatur

Literaturempfehlungen:

- E. Wintermantel und S.-W. Ha, Medizintechnik Life Science Engineering, Springer Verlag Berlin
- W. Bergmann, Werkstofftechnik I, Carl Hanser Verlag München
- Ausserdem siehe Literaturempfehlungen und -verweise in der Veranstaltung sowie im pdf der Veranstaltung

Modulbezeichnung (ggf. englische Bezei	Modul-KzBez. oder Nr.	
Biomedizinische Modellbildung, Testung und Simulation mit		ВМВ
Praktikum		
(Biomedical Modeling, Testing and Simulation with Laboratory		
Exercises)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.		Schwerpunkt Pflichtmodul	5

Verpflichtende Voraussetzungen			
keine			
Empfohlene Vorkenntnisse		\	
keine			

Inhalte		
siehe Teilmodul		

Nr. Bezeichnung der Teilmodule L	Lehrumfang	Arbeitsaufwand
[s	SWS o. UE	[ECTS-Credits]
Biomedizinische Modellbildung, Testung und Simulation mit Praktikum	4 SWS	5

Teilmodul	TM-Kurzbezeichnung	
Biomedizinische Modellbildung, Testun	g und Simulation mit	вмв
Praktikum		
(Biomedical Modeling, Testing and Sim	nulation with Laboratory	
Exercises)		
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Lars Krenkel	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Praktikum		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung	
Studienarbeit mit Präsentation	
Zugelassene Hilfsmittel für Leistungsnachweis	
k. A.	

Inhalte und Qualifikationsziele

Modelle und Simulationen sind wichtiger Bestandteil der medizintechnischen Produktentwicklung und Grundlagenforschung. Das Modul BMB vermittelt theoretische und praktische Grundlagen sowie Übungen zur praktischen Umsetzung im Rahmen eines Projektes zur Modellierung naturwissenschaftlich-biomedizintechnischer Fragestellunge. Folgende Themeninhalt werden behandelt:

- Einführung grundlegende Terminologie/Begriffsbildung (bsp. System, Modell, Simulation, Berechnung, Validierung, abstraktion, etc.).
- Anwendung physikalischer, mathematischer, statistischer Prinzipien zur Modellbildung/ modellierung.
- Analyse von Modellgleichungen (bsp. linear, nichtlinear, Anfangswertproblem, Randwertproblem, etc.).
- Systematische Formulierungen physikalischer Gesetze (bsp. Energieprinzip, Bilanzgleichung, etc.).
- Methoden der experimentellen Modellbildung (bsp. Parameteridentifikation).
- Exemplarische Modellierung biomedizinischer Prozesse und Analyse von Modellergebnissen (bsp. Abstraktion, Modellierungsfehler, numerische Fehler, Stabilität, chaotisches Verhalten).
- Analyse und Aufbereitung von Ursprungs- und Modelldaten.
- Eigenständige praktische Modellbildung an ausgewählten biomedizinischen Themen in Kleingruppen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Systeme strukturiert systematisch zu beschreiben (1) und weiterführend zu analysieren (3).
- Systeme in Modelle hinreichender Einfachheit bei notwendiger Komplexität zu überführen (3) und dafür geeignete mathematische Formulierungen und numerische Verfahren auszuwählen (2).
- eigenständig mittelgradig komplexe Systeme zu grundlegenden medizintechnischen Fragestellungen ingenieurswissenschaftlich modellhaft abzubilden (2).
- Möglichkeiten und Limitationen abgeleiteter Modelle zu bewerten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Verständnis der Systematik von Modellbildung und Simulation physikalisch/technischer/ biomedizinischer Systeme zu entwickeln (3).
- Die erworbenen Kenntnisse und Fertigkeiten methodisch anzuwenden (2), wobei das systematische Vorgehen zur Problemlösung im Vordergrund steht.
- Vorliegende Modelle hinsichtlich Anwendbarkeit, Gültigkeit und Plausibilität zu bewerten (2).
- Praktische Aufgabenstellungen in Projektteams strukturiert und synergetisch zu bearbeiten

 (2) sowie erzielte Ergebnisse in entsprechender Fachterminologie im Plenum zu
 präsentieren (2).

Angebotene Lehrunterlagen

Übungsunterlagen, Lehrbuchempfehlungen

Lehrmedien

Tafel, Rechner/Beamer, Prüfstände, Rechnerarbeitsplätze für Teilnehmer

Literatur

wird in der Veranstaltung bekannt gegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Dentale Biomaterialien		DBM
Modulverantwortliche/r	Fakultät	
Prof. Dr. Helga Hornberger	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Inhalte			
siehe Teilmodul			

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Dentale Biomaterialien	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Dentale Biomaterialien		DBM
Verantwortliche/r	Fakultät	
Prof. Dr. Helga Hornberger	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Helga Hornberger	nur im Wintersemester	
Lehrform	·	
Seminaristischer Unterricht bei fach	wissenschaftlichen Wahlpflich	tmodulen

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung siehe Wahlpflichtmodulkatalog Master Medizintechnik Zugelassene Hilfsmittel für Leistungsnachweis SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Zahn, Aufbau und Struktur von Schmelz und Dentin, Zahnhalteapparat, Krankheitsbilder
- Kariesätiologie, Kavitätendesign und Befestigungskonzepte
- Füllungstherapie, zahnmedizinische Indikationen und Limitationen, Restaurationsmaterialien, deren Charakterisierung und relevante Eigenschaften, Arten der Versorgung und Befestigung
- prothetische Kronen- und Brückenmaterialien, zahnmedizinische Indikationen und Limitationen, Werkstoffauswahl, Herstellverfahren, deren Charakterisierung und relevante Eigenschaften, insbesondere Ästhetik, mechanische Eigenschaften und Korrosions- und Alterungseigenschaften
- Implantatmaterialien, ihre Eigenschaften und Charakterisierung, Werkstoffauswahl, Oberflächenkonditionierung, Korrosionseigenschaften und präklinische in-vitro Prüfung, mechanische Eigenschaften und Bauteilprüfung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die wichtigsten medizinischen Fachausdrücke verstehen, mit den Grundzügen der Zahnautonomie vertraut sein und die Funktionen des Zahnapparates kennen (1)
- mit den verschiedenen Versagensmechanismen (Krankheitsbilder) vertraut sein (1)

- Dentalmaterialien, daraus hergestellte Bauteile und ersetzte Funktionen kennen und die Anforderungen, die an diese Bauteile gestellt werden, verstehen (2)
- die wichtigsten Herstellungsmethoden kennen, um die Limitation im Einsatz zu verstehen und die Möglichkeiten der Optimierung zu erkennen (3)
- die wichtigsten Werkstoffkennwerte und ihre praktische Bedeutung für Dentalmaterialien kennen und erläutern können (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- in einem interdisziplinär geprägten Umfeld die Fachausdrücke kompetent einsetzen können (1)
- nicht nur die werkstoffwissenschaftlichen Grundlagen, sondern auch die dentalen Anwendungen verstehen, um bereichsübergreifende Diskussionen zu führen (2)
- einige Aspekte der möglichen gesellschaftlichen, wirtschaftlichen und ethischen Auswirkungen der Ingenieurtätigkeit im dentalen Umfeld zu reflektieren (2) und in ihr Handeln verantwortungsbewusst einzubeziehen (3).

Angebotene Lehrunterlagen

Kurs E-Learning-Plattform pdf Folien der Vorlesung

Lehrmedien

Rechner/ Beamer, Exponate (Produkte und Modelle)

Literatur

siehe Veranstaltung

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Digitale Produktentwicklung additiv gefertigter Medizinprodukte		DPM
Modulverantwortliche/r Fakultät		
Prof. Dr. Tobias Laumer Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Digitale Produktentwicklung additiv	4 SWS	5
	gefertigter Medizinprodukte		

Teilmodul	TM-Kurzbezeichnung		
Digitale Produktentwicklung additiv ge	DPM		
(Digital Product Development of Additi Products)			
Verantwortliche/r Fakultät			
Prof. Dr. Tobias Laumer Maschinenbau			
Lehrende/r / Dozierende/r Angebotsfrequenz			
Prof. Dr. Tobias Laumer nur im Wintersemester			
Lehrform			
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen			

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS		5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung
siehe Wahlpflichtmodulkatalog Master Medizintechnik
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

Praktische Versuche als Gruppenarbeit zu den Themen:

- Topologieoptimierung von additiv herzustellenden Implantaten
- Verwendung von Fused Layer Modelling (FLM) Druckern mit polymeren und metallisch gefüllten Filamenten zur Erzeugung von Probekörpern und Bauteilen
- Qualifizierung von additiv hergestellten Bauteilen

Detaillierte Erläuterung unterschiedlicher additiver Fertigungstechnologien, einer prozessgerechten Bauteilgestaltung für additiv zu fertigende Bauteile und wichtiger Werkstoffeigenschaften mit deren Einfluss auf den Prozess und die resultierenden Bauteileigenschaften

Aufzeigen der Einsatzfelder und des Potentials von additiven Fertigungstechnologien mit Schwerpunkt auf der Medizintechnik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Eigenständige Verwendung von FLM-Druckern und Parameterfindung zur Herstellung von additiven Bauteilen (2)
- Grundlegendes Verständnis zur gesamtheitlichen Prozesskette bestehend aus Konstruktion, Fertigung und Qualifizierung von additiven Bauteilen erarbeiten (2)
- Den Zusammenhang zwischen Werkstoff-, Prozess- und Bauteileigenschaften bei den unterschiedlichen additiven Fertigungsverfahren verstehen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fähigkeiten im Projektmanagement und der Gruppenarbeit verbessern (2)
- Eigenständige Problemlösungskompetenz erhöhen (2)
- Komplexe Zusammenhänge und Wechselwirkungen verschiedener Einflussfaktoren bei unterschiedlichen additiven Fertigungstechnologien zu verstehen und diese Fähigkeit auch grundlegend auf andere Fertigungstechnologien zu übertragen (3)

Angebotene Lehrunterlagen

Präsentationsfolien, Lehrbücher, Fachartikel, Lehrvideos, Fachvorträge externer Referenten

Lehrmedien

Rechner, Anlagen

Literatur

Bereitgestellt auf GRIPS-Kursseite

Modulbezeichnung (ggf. englische Bezeichnung (ggf. englisc	Modul-KzBez. oder Nr.	
Forschungsarbeit 1		FA1
Modulverantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.		Schwerpunkt Pflichtmodul	15

Verpflichtende Voraussetzungen		
Betreuungsvereinbarung mit Dozenten		

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand	
		[SWS o. UE]	[ECTS-Credits]	
1.	Forschungsarbeit 1	4 SWS	15	

Teilmodul		TM-Kurzbezeichnung
Forschungsarbeit 1		FA1
(Research Thesis 1)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		
Projektarbeit		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	4 SWS	deutsch	15

Präsenzstudium	Eigenstudium
100 h	350 h

Studien- und Prüfungsleistung
Studienarbeit mit Präsentation
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte und Qualifikationsziele

- Selbstständiges wissenschaftliches Arbeiten
- Anwendung methodischer Entwicklungsverfahren
- Erstellung von Modellen und Vorbereitung von Simulation
- Verifizierung und Validierung von Modellen und Simulation
- Regeln zur Dokumentation und Veröffentlichung wissenschaftlicher Arbeiten
- Grundlagen des Projektmanagements
- Projektstrukturplanung und Terminplanung
- Ressourcenplanung und Risikoidentifikation
- Projektpräsentation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- experimentelle Erfahrung widerzugeben (1)
- experimentelle Ergebnisse zu beurteilen (2)
- Gesetzmäßigkeiten und wesentlichen Eigenschaften eines technischen Zusammenhangs zu erkennen (2)
- Modellbildung und Simulation zu beschreiben (1) und ggf. anzuwenden (2)
- Kenntnisse zur Planung, Veröffentlichung und Präsentation ingenieurwissenschaftlicher Arbeiten anzuwenden (2)

- Komplexe Aufgabenstellungen zu strukturieren (3) und Projektabläufe effizient zu planen
 (3)
- Projektpläne darzustellen (2) und die Gestaltung einer Projektdokumentation auszuführen
 (2)
- Projektrisiken zu analysieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Aufgaben zu analysieren (2) und zu dokumentieren (2)
- komplexe Aufgaben zu strukturieren (2) und zu managen (2)
- Randbedingungen zur Projekterfüllung zu identifizieren (2)
- Projektmitglieder einzubinden (2)
- Projektplanungen zu dokumentieren (2)
- Projektmanagement anzuwenden (2) und zu dokumentieren (2)
- Projektergebnisse in Präsentationen wissenschaftlich darzustellen (3)
- Projektergebnisse in Dokumentationen wissenschaftlich darzustellen (3)

Angebotene Lehrunterlagen

Handbücher, Normen, Richtlinien, Tutorials, Publikationen, Patente

Lehrmedien

Rechnerarbeitsplatz für jeden Teilnehmer, Prüfstände, Software

Literatur

keine Angaben

Weitere Informationen zur Lehrveranstaltung

FA1 und FA2 bauen thematisch aufeinander auf

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Forschungsarbeit 2		FA2
Modulverantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.		Schwerpunkt Pflichtmodul	15

Verpflichtende Voraussetzungen		
Betreuungsvereinbarung mit Dozenten, FA1		

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand		
		[SWS o. UE]	[ECTS-Credits]		
1.	Forschungsarbeit 2	4 SWS	15		

Teilmodul		TM-Kurzbezeichnung
Forschungsarbeit 2		FA2
(Research Thesis 2)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		
Projektarbeit		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	15

Präsenzstudium	Eigenstudium
100 h	350 h

Studien- und Prüfungsleistung
Studienarbeit mit Präsentation
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte und Qualifikationsziele

- Selbstständiges wissenschaftliches Arbeiten
- Anwendung methodischer Entwicklungsverfahren
- Erstellung von Modellen und Vorbereitung von Simulation
- Verifizierung und Validierung von Modellen und Simulation
- Regeln zur Dokumentation und Veröffentlichung wissenschaftlicher Arbeiten
- Grundlagen des Projektmanagements
- Projektstrukturplanung und Terminplanung
- Ressourcenplanung und Risikoidentifikation
- Projektpräsentation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- experimentelle Erfahrung widerzugeben (1)
- experimentelle Ergebnisse zu beurteilen (2)
- Gesetzmäßigkeiten und wesentlichen Eigenschaften eines technischen Zusammenhangs zu erkennen (2)
- Modellbildung und Simulation zu beschreiben (1) und ggf. anzuwenden (2)
- Kenntnisse zur Planung, Veröffentlichung und Präsentation ingenieurwissenschaftlicher Arbeiten anzuwenden (2)

- Komplexe Aufgabenstellungen zu strukturieren (3) und Projektabläufe effizient zu planen
 (3)
- Projektpläne darzustellen (2) und die Gestaltung einer Projektdokumentation auszuführen
- Projektrisiken zu analysieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Aufgaben zu analysieren (2) und zu dokumentieren (2)
- komplexe Aufgaben zu strukturieren (2) und zu managen (2)
- Randbedingungen zur Projekterfüllung zu identifizieren (2)
- Projektmitglieder einzubinden (2)
- Projektplanungen zu dokumentieren (2)
- Projektmanagement anzuwenden (2) und zu dokumentieren (2)
- Projektergebnisse in Präsentationen wissenschaftlich darzustellen (3)
- Projektergebnisse in Dokumentationen wissenschaftlich darzustellen (3)

Angebotene Lehrunterlagen

Handbücher, Normen, Richtlinien, Tutorials, Publikationen, Patente

Lehrmedien

Rechnerarbeitsplatz für jeden Teilnehmer, Prüfstände, Software

Literatur

keine Angaben

Weitere Informationen zur Lehrveranstaltung

FA1 und FA2 bauen thematisch aufeinander auf

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Innovationsmanagement		IMT
(Innovation Management)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Max Singh	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Innovationsmanagement	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Innovationsmanagement		IMT
(Innovation Management)		
Verantwortliche/r	Fakultät	
Prof. Dr. Max Singh	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Max Singh	nur im Wintersemester	
Lehrform		
Seminaristischer Unterricht bei fa	chwissenschaftlichen Wahlpflich	tmodulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch/englisch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung
siehe Wahlpflichtmodulkatalog Master Medizintechnik
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte und Qualifikationsziele

Die Medizintechnik ist ein stark innovationsgetriebener Sektor. Um den speziellen Regulierungen und Anforderungen der Gesundheitsindustrie gerecht zu werden, müssen etablierte Innovationsmethoden angepasst werden. Zudem unterliegen Vermarktung und Vertrieb von Medizinprodukten besonderen Marktbedingungen. Die vermittelten theoretischen Inhalte umfassen:

- Grundlagen des Innovationsmanagements und dessen Bedeutung
- Innovationsansätze in der Medizintechnik, insbesondere "Lead User"-Ansätze
- Strategien und Management von Innovationen
- Methoden zur Ideenfindung und Entscheidungsprozesse
- Regulatorische Rahmenbedingungen
- Wichtige Innovationswerkzeuge

Innovationsmanagement wird eng mit Entrepreneurship und Intrapreneurship verknüpft. Die Studierenden arbeiten daher praxisorientiert an einem fiktiven Gründungsprojekt im Gesundheitswesen, das von der Entwicklung einer ersten Idee bis zur Fertigstellung eines ausgereiften Prototyps im Rahmen einer iterativen Produktentwicklung reicht. Dabei entwickeln sie ihr unternehmerisches Potenzial durch die Anwendung theoretischer Konzepte. In engem Austausch mit Studierendenteams der Hochschule München am Strascheg Center for Entrepreneurship (SCE) und durch projektbegleitendes Coaching durch Mentoren aus der Medizintechnik sowie Vorträge von Marktexperten erhalten sie zudem wertvolle Einblicke in die Praxis.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Konzepte und Prozesse von Innovationen zu bewerten (2): Die Studierenden können wesentliche Konzepte und Prozesse der Innovation und Produktentwicklung bewerten, insbesondere im Bereich der Medizintechnik.
- Rahmenbedingungen für Innovationskultur zu erkennen (2): Die Studierenden erkennen die Rahmenbedingungen, die eine förderliche Innovationskultur unterstützen, und wenden diese im praktischen Kontext an.
- Besonderheiten von Innovationsprozessen in der Medizintechnik zu erklären (2): Die Studierenden erläutern die spezifischen Herausforderungen von Innovationsprozessen in der Medizintechnik.
- Methoden zur Ideengenerierung anzuwenden (3): Die Studierenden wenden Methoden zur Ideengenerierung an, um innovative Lösungen für ihr Projekt zu entwickeln.
- Technologien zur Entwicklung eines ausgereiften Prototypen zu führen (3): Die Studierenden lernen, wie Technologien im Rahmen des Produktentstehungsprozesses bis zur Fertigstellung eines ausgereiften Prototyps entwickelt werden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- unternehmerisches Potenzial zu entfalten (3): Die Studierenden entwickeln ihr unternehmerisches Potenzial durch die praktische Anwendung von Konzepten und Lösungen in ihrem Projekt.
- Standpunkte überzeugend zu vertreten (3): Die Studierenden vertreten ihre Standpunkte überzeugend und reflektieren ihre Entscheidungen kritisch bei der Präsentation ihres Vorhabens.

- Kritisch mit bestehenden Lösungen umzugehen (3): Die Studierenden gehen kritisch mit bestehenden Lösungen und Prozessen um und verbessern diese durch fundierte Analysen.
- effektive Zusammenarbeit und Kommunikation zu stärken (3): Die Studierenden verbessern ihre Fähigkeiten zur Zusammenarbeit und Kommunikation durch den engen Austausch mit anderen Studierenden und Experten.
- Selbstständigkeit und Problemlösungsfähigkeiten zu stärken (3): Die Studierenden arbeiten selbstständig an ihrem Projekt und verbessern ihre Problemlösungsfähigkeiten durch regelmäßiges Feedback und Coaching durch Medizintechnik-Experten.

Angebotene Lehrunterlagen

Präsentationsskript, Übungsaufgaben

Lehrmedien

Flipchart, Beamer, Tafel, Moderationskarten, digitale Medien

Literatur

Wird zu Vorlesungsbeginn bekanntgegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Kognitive Systeme		KS
(Cognitive Systems)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Markus Goldhacker	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

٨	lr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
			[SWS o. UE]	[ECTS-Credits]
1		Kognitive Systeme	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Kognitive Systeme		KS
(Cognitive Systems)		
Verantwortliche/r	Fakultät	
Prof. Dr. Markus Goldhacker	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Markus Goldhacker	nur im Wintersemester	
Lehrform		
Seminaristischer Unterricht bei fac	hwissenschaftlichen Wahlpflich	tmodulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung

siehe Wahlpflichtmodulkatalog Master Medizintechnik

Das Modul KS wird in den Studiengängen MIE und MMT gleich geprüft. Das Modul wird wechselseitig anerkannt.

Zugelassene Hilfsmittel für Leistungsnachweis

alle (ausgenommen Anwendungen wie z.B. ChatGPT)

Inhalte und Qualifikationsziele

In diesem Seminar werden ausgewählte Bereiche des *Machine Learnings* – insbesondere des *Deep Learnings* – im Kontext des Maschinenbaus anwendungsorientiert behandelt und aus biologischer/kognitiver Perspektive motiviert. Daher wird, neben der methodischen Einführung und der praxisorientierten Anwendung mittels Übungsaufgaben und Mini-Projekten, auch der theoretische Hintergrund aus der Kognitionswissenschaft verschiedener Algorithmen vermittelt.

Konkrete Inhalte:

- Grundbegriffe der menschlichen Kognition von Perzeption über Planung, Entscheidungsfindung und Aufgabenausführung
- Möglichkeiten der Übertragung kognitiver Fähigkeiten auf technische Systeme
- Verstehen von Eigenschaften kognitiver Systeme: Trainierbarkeit, Generalisierungsfähigkeit, Reproduzierbarkeit
- Fokus auf und Vertiefung in spezifische Aspekte des Machine Learning und Deep Learning
- Motivation verschiedener Algorithmen durch deren biologische/kognitive Grundlagen
- Validierung von Machine Learning Modellen: Signalentdeckungstheorie als kognitive Grundlage einer Confusion Matrix und von ROC Kurven
- Aufbau und Eigenschaften verschiedener Arten lernfähiger Systeme: Varianten künstlicher neuronaler Netze (z.B. CNN, RNN, LSTM, Auto-Encoder, GANs), Reinforcement Learning, Matrix Factorization, usw.
- Verständnis von Algorithmen zum Trainieren lernfähiger Strukturen: z.B. Gradientenabstieg, Back-Propagation
- Verbesserung des Trainings durch künstliche Augmentierung von Trainingsdaten
- Verständnis typischer Probleme bei Training und Betrieb kognitiver Systeme: Overfitting, Erklärbarkeit des erlernten Verhaltens
- Anwendung technisch repräsentierter kognitiver Eigenschaften in verschiedenen Disziplinen

Das Arbeitsmedium ist die Programmiersprache *Python* und *JupyterLab/JupyterNotebook*. In *Python* kann sich in den ersten Wochen der Veranstaltung mittels Tutorials eingearbeitet werden und weiteres Python-Wissen wird *on-the-fly* parallel zu den inhaltlichen Themen vermittelt.

Die Module "Data Analytics", "Predictive Maintenance" und "Kognitive Systeme" vermitteln jeweils sich *ergänzende* Inhalte. Somit können sowohl einzelne, als auch mehrere dieser Module besucht werden.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Lösungen zu ingenieurwissenschaftlichen Problemen durch den Einsatz kognitiver Systeme zu analysieren, zu abstrahieren und zu modularisieren (2)
- Trainings- und Testdaten zu erzeugen, zu labeln und zu augmentieren (2)
- vorliegende Trainings- und Testdaten hinsichtlich Nutzbarkeit für gegebene Trainingsaufgaben zu bewerten (2)
- lernfähige Strukturen und passende Trainingsalgorithmen aufgabenbezogen auszuwählen, zu trainieren und zu testen (2)
- die Performanz von Machine Learning Modellen im Trainings- und Produktivbetrieb anhand gegebener Kennzahlen aufgabenspezifisch zu bewerten (2)
- Machine Learning und Deep Learning als eigene Schicht in bestehende Planungs-, Steuerungs- und Regelungssysteme zu implementieren (1)

• existierende Hard- und Software-Werkzeuge – insbesondere Python – für Design und Training zu nutzen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- textuell oder/und graphisch spezifizierte Anforderungen an kognitive Systeme zu verstehen und anforderungsgerechte Lösungen zu entwickeln (2)
- komplexe Aufgaben aus dem Bereich kognitiver Systeme im Team zu diskutieren und zu bearbeiten (2)
- die Verwendung von Machine Learning Ansätzen gegen eine alternative Verwendung klassischer, nicht datengetriebener Verfahren abzuwägen (1)
- Analyse- und Berechnungsergebnisse in Fachgesprächen zu präsentieren (1)
- die zentrale Bedeutung des maschinellen Lernens für den modernen Maschinenbau zu erfassen und zu verteidigen (1)
- kognitive Systeme als wesentliches Element in Industrie 4.0 zu verstehen (1)

Angebotene Lehrunterlagen

Folien und Übungsblätter in Form von JupyterNotebooks

Lehrmedien

Overheadprojektor, Tafel

Literatur

- VanderPlas., J. Python Data Science Handbook: Essential Tools for working with Data. O'Reilly UK Ltd. 2016.
- Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition. O'Reilly Media, Inc. 2019.
- Allen B. Downey. Think Stats: Exploratory Data Analysis. O'Reilly UK Ltd. 2014.
- Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer. 2006.
- Grus, J. Data Science from Scratch. O'Reilly Media Inc. 2019.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Korrosion und Degradation von Biomaterialien		KDB
(Corrosion and Degradation of Biomaterials)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Helga Hornberger	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Inhalte			
siehe Teilmodul			

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand	
		[SWS o. UE]	[ECTS-Credits]	
1.	Korrosion und Degradation von Biomaterialien	4 SWS	5	

Teilmodul		TM-Kurzbezeichnung		
Korrosion und Degradation von Biomaterialien		KDB		
(Corrosion and Degradation of Biomaterials)				
Verantwortliche/r	Fakultät			
Prof. Dr. Helga Hornberger	Maschinenbau			
Lehrende/r / Dozierende/r	Angebotsfrequenz			
Prof. Dr. Helga Hornberger	nur im Sommersemester			
Lehrform				
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen				

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung	
siehe Wahlpflichtmodulkatalog Master Medizintechnik	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte und Qualifikationsziele

- Grundlagen der Korrosion: Elektrodenpotential, Kinetik, Korrosionsarten
- Messmethoden
- Korrosionsschutz und Beschichtungen
- Korrosions- und Degradationsverhalten von inerten metallischen Biomaterialien sowie von resorbierbaren
- Löslichkeit und Alterungsverhalten von inerten Keramiken sowie degradierbaren
- Degradierbarkeit und Alterung von Polymeren und Kompositen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage.

- die wichtigsten Korrosionsvorgänge sowie ihre unterschiedlichen Mechanismen (elektrochemisch, chemisch und physikalisch) verstehen und erläutern können (2)
- das Korrosionsverhalten der wichtigsten Biomaterialien sowie die Kennwerte und ihre praktische Bedeutung kennen und erläutern können (2)
- die Anforderungen, die bezüglich Korrosionsverhalten an Implantat oder Prothese gestellt werden, erkennen und verstehen (3)
- die wichtigsten Herstellungsmethoden kennen, um die Limitation des Materials und Bauteils im Einsatz zu verstehen und die Möglichkeiten der Optimierung zu erkennen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit Fachwörtern der Korrosion und Alterung präzise und sorgfältig umzugehen, um z.B. in Zulassungsverfahren argumentieren zu können (2)
- mögliche Risiken durch Korrosion und Alterung von Materialien, die als Medizinproduckte im und am Körper eingesetzt werden, zu verstehen (3)
- nicht nur werkstoffwissenschaftliche Grundlagen, sondern auch die Anwendung in Medizinprodukten zu verstehen, um bereichsübergreifende Diskussionen zu führen (2)

Angebotene Lehrunterlagen

Kurs E-Learning-Plattform pdf Folien der Vorlesung

Lehrmedien

Rechner/ Beamer, Exponate

Literatur

- E. Wintermantel und S.-W. Ha, Medizintechnik Life Science Engineering, Springer Verlag Berlin
- W. Bergmann, Werkstofftechnik I, Carl Hanser Verlag München
- Ausserdem siehe Literaturempfehlungen und -verweise in der Veranstaltung sowie im pdf der Veranstaltung

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. ode	er Nr.
Masterarbeit mit Präsentation		MAP	
(Master Thesis with Presentation)			
Modulverantwortliche/r	Fakultät		
Prof. Dr. Sebastian Dendorfer	Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.		Schwerpunkt Pflichtmodul	30

Verpflichtende Voraussetzungen				
Zulassungsvoraussetzung für MP:				
Die schriftliche Arbeit muss mindestens mit "ausreichend"	bewerte	t worde	n sein.	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Mündliche Präsentation der		2
	Masterarbeit		
2.	Schriftliche Ausarbeit		28

Teilmodul		TM-Kurzbezeichnung
Mündliche Präsentation der Masterarbeit		MP
(Presentation of Master Thesis)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gomaio otaaionpian	[SWS oder UE]		[ECTS-Credits]
3.		deutsch	2

Präsenzstudium	Eigenstudium
-	-

Studien- und Prüfungsleistung

Präsentation der Masterarbeit

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

- Anleitung zum wissenschaftlichen Arbeiten
- Durchführung von Literatur-Recherchen
- Verfassen wissenschaftlicher Texten
- Vortragstechnik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- demonstriert die Fähigkeit zur wissenschaftlichen Arbeit (3)
- demonstriert die F\u00e4higkeit wissenschaftliche Erkenntnisse in Wort und Schrift darzustellen
 (3)

Lehrmedien

Tafel, Overheadprojektor, Rechner/Beamer

Literatur

keine Literaturangaben

Teilmodul		TM-Kurzbezeichnung
Schriftliche Ausarbeit		MA
(Master Thesis)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
germane eta anempian	[SWS oder UE]		[ECTS-Credits]
3.		deutsch	28

Präsenzstudium	Eigenstudium
-	-

Studien- und Prüfungsleistung

Masterarbeit

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

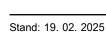
- Selbständige ingenieurmäßige Bearbeitung von technischen Fragestellungen, auch unter Einbeziehung anderer Disziplinen
- Aufbereitung und kritische Bewertung der Ergebnisse in wissenschaftlicher Form
- Dokumentation der Ergebnisse in wissenschaftlicher Form

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- innovative Methoden bei der anwendungsorientierten Lösung von technischen Problemstellungen einzusetzen (3)
- theoretisch und experimentell gewonnene Ergebnisse kritisch zu bewerten (3) und daraus Schlüsse zu ziehen (3)
- Fertigkeit zur Dokumentation einer Untersuchung in Form einer wissenschaftlich fundierten Abhandlung (2)

Angebotene Lehrunterlagen


k.A.

Lehrmedien

k.A.

Literatur

keine Literaturangaben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Numerische Strömungsberechnung		NSB
(Computational Fluid Dynamics)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Inhalte				
siehe Teilmodul				

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Numerische Strömungsberechnung	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Numerische Strömungsberechnung		NSB
(Computational Fluid Dynamics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Lars Krenkel	nur im Wintersemester	
Lehrform		
Seminaristischer Unterricht bei fachv	vissenschaftlichen Wahlpflichtr	modulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung
siehe Wahlpflichtmodulkatalog Master Medizintechnik
Zugelassene Hilfsmittel für Leistungsnachweis
k. A.

Inhalte und Qualifikationsziele

In der Lehrveranstaltung Numerische Strömungsberechnung werden theoretische und praktische Kenntnisse zur numerischen Berechnung von Strömungen kompressibler/inkompressibler Fluide anhand biomedizinischer Problemstellungen vermittelt. Ausgangspunkt dafür ist eine kurze vorstellung der wichtigsten theoretischen Grundlagen der numerischen Strömungsmechanik (Computational Fluid Dynamics - CFD) sowie ein praktischer Einstieg in Funktionsweise und Anwendung moderner CFD-Software.

Folgende Inhalt werden (aufbauend auf den Modulen GWS, BFM sowie NV) thematisiert:

- Grundgleichungen zu kompressiblen und inkompressiblen, reibungsbehafteten Strömungen
- Einführung in die Theorie der Strömungs- und Temperatur-Grenzschichten
- Einführung in die Turbulenzmodellierung
- Grundlagen zur räumlichen und zeitlichen Diskretisierung mittels Finite-Volumen-Verfahren
- Einführung in numerische Lösungsverfahren
- Theoretische und praktische Einführung in die numerische Gittergenerierung
- Praktische Einführung in die numerische Strömungsberechnung mittels Strömungslöser am Beispiel von biologischen/biomedizinischen Strömungen
 - Einfluss von numerischen und geometrischen Randbedingungen
- Stabilität und Konvergenz
- Qualitätskriterien, numerische Genauigkeit und numerische Fehler
- Vermittlung erster praktischer Erfahrungen im Umgang mit dem kommerziellen ANSYS ICEM CFD und ANSYS FLUENT Softwarepaket

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- grundlegende biomedizinische/biofluidmechanische Strömungsfragen zu abstrahieren (1) und mittels eines kommerziellen CFD-Softwarepaketes zu untersuchen (2).
- geeignete numerische Randbedingungen und numerische Modelle zur Beschreibung eines strömungsmechanischen Problems auszuwählen (2) und praktisch anzuwenden (2).
- Wichtige Einflussgrößen und Fehlerquellen im Rahmen einer numerischen Strömungsberechnung zu identifizieren (1) und grundlegend zu bewerten (2).
- Ergebnisse numerischer Strömungsberechnungen darzustellen und zu bewerten (2).
- grundlegende Strömungsvorgängen mit Hilfe von CFD wissenschaftlich zu analysieren (3).

Lernziele: Persönliche Kompetenz

- die Grundlagen der numerischen Strömungsberechnung ingenieurgemäßig zu verstehen
 (2) und verständlich zu beschreiben (1).
- eigenständig Problemlösungen zu grundlegenden biofluidmechanischen Fragestellungen mittels kommerzieller CFD Software ingenieurswissenschaftlich zu erarbeiten (2).
- Vorliegende numerische Berechnungsansätze sowie numerische Ergebnisse im Kontext Genauigkeit, Zuverlässigkeit, möglicher Fehler/Probleme bzw. genereller Aussagekraft/ Qualität zu bewerten (2).
- Praktische Aufgabenstellungen in Projektteams strukturiert und synergetisch zu bearbeiten (2) sowie erzielte Ergebisse in entsprechender Fachterminologie im Plenum zu präsentieren (2).

Angebotene Lehrunterlagen

Übungsunterlagen, Lehrbuchempfehlungen

Lehrmedien

Tafel/ Overheadprojektor/ Beamer, PC

Literatur

wird in der Veranstaltung bekannt gegeben. Exemplarisch: H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson Prentice Hall; J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer Verlag.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. o	der Nr.
Optimierung		OPT	
(Optimization Methods)			
Modulverantwortliche/r	Fakultät		
Prof. Dr. Thomas Schlegl	Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Verpflichtende Voraussetzungen			
keine			
Empfohlene Vorkenntnisse			
Differenzial- und Matrizenrechung, Grundlagen der Progra Lösungsverfahren, Regelungstechnik	ammierui	ng, nume	rische

Inhalte			
siehe Teilmodul			

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Optimierung	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Optimierung		ОРТ
(Optimization Methods)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schlegl	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Schlegl	nur im Sommersemester	
Lehrform		
Seminaristischer Unterricht bei fac	chwissenschaftlichen Wahlpflichti	modulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung

siehe Wahlpflichtmodulkatalog Master Medizintechnik

Das Modul OPT wird in den Studiengängen MMB und MMT gleich geprüft. Das Modul wird wechselseitig anerkannt.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 beliebig bedrucktes oder beschriebenes DIN-A4-Blatt

Inhalte und Qualifikationsziele

- Grundbegriffe der Optimierungstheorie und ihre Anwendungsmöglichkeiten
- Möglichkeiten der Klassifizierung von Optimierungsproblemen
- Erkennen und mathematisches Formulieren eines Optimierungsproblems
- Definition statische Optimierungsprobleme
- Abstraktion und geschlossene Lösung ein- und mehrdimensionaler statischer Optimierungsprobleme
- Formulierung und geschlossene Lösung durch Gleichungsnebenbedingungen eingeschränkter statischer Optimierungsprobleme
- Formulierung und geschlossene Lösung durch Ungleichungsnebenbedingungen eingeschränkter statischer Optimierungsprobleme
- Anwendung der Methode kleinster Fehlerquadrate
- Anwendung verschiedener numerischer und gemischt analytisch-numerischer Lösungsverfahren für unbeschränkte und beschränkte statische Optimierungsprobleme (Gradientenverfahren, Newton- und Quasi-Newtonverfahren, Verfahren nach Levenberg-Marquardt, sequentielle quadratischer Programmierung, usw.)
- Lösung statischer Optimierungsprobleme mit evolutionären AlgorithmenAnwendungsmöglichkeiten von Verfahren der statischen Optimierung in der Produktionsplanung, der Regelungstechnik und der Logistik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Eigenschaften von Optimierungsproblemen zu analysieren (3)
- Optimierungsprobleme zu abstrahieren, zu modularisieren und graphisch zu repräsentieren (2)
- Freiheitsgrade, Zielfunktionen und Restriktionen aufgabenangemessen zu formulieren (2)
- Optimierungsprobleme unter Berücksichtigung einer werkzeugunterstützten Lösung zu formulieren (2)
- das für eine gegebene Optimierungsaufgabe geeignetste Lösungsverfahren auszuwählen
 (2)
- Optimierungsprobleme werkzeugunterstützt zu lösen (2)
- rechnergestützt generierte Lösungen für Optimierungsproblem kritisch zu analysieren (3)
- die universelle Anwendbarkeit optimierungstheoretischer Methoden und Lösungsverfahren, etwa auf dem Gebiet der künstlichen Intelligenz, zu erkennen (1)

Lernziele: Persönliche Kompetenz

- mit textuell oder/und graphisch spezifizierten Optimierungsproblemen umzugehen (1)
- die Übertragbarkeit optimierungstheoretischer Methoden auf viele Fachgebiete von Ingenieurwissenschaften bis Ökonomie zu verstehen (1)
- komplizierte, praxisnahe Optimierungsprobleme im Team zu bearbeiten (1)
- Analyse- und Berechnungsergebnisse im Fachgespräch zu präsentieren (1)
- die zentrale Bedeutung der Optimierungstheorie als Werkzeug für Entscheidungsfindungsprozesse zu erkennen (1)
- ethische Implikationen des Einsatzes optimierungstheoretischer Methoden zu erkennen (1)
- Technikfolgen der Anwendung optimierungstheoretischer Methoden abzuschätzen (1)
- sozioökonomische Aspekte der Optimierungstheorie für die gesamtgesellschaftliche Entwicklung in Europa zu durchdringen (2)

Lehrmedien

Rechnergestützte Präsentation

Literatur

Literaturempfehlungen siehe Lehrunterlagen siehe Kurs E-Learning-Plattform

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Polymere in der Medizintechnik		PIM
(Polymers in Medical Technology)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Helga Hornberger Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Inhalte			
siehe Teilmodul			

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Polymere in der Medizintechnik	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Polymere in der Medizintechnik		PIM
(Polymers in Medical Technology)		
Verantwortliche/r	Fakultät	
Prof. Dr. Helga Hornberger	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Dr. Bernhard Schmitt (LB)	nur im Sommersemester	
Lehrform		
Seminaristischer Unterricht bei fachw	rissenschaftlichen Wahlpflichtm	nodulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. oder 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung	
siehe Wahlpflichtmodulkatalog Master Medizintech	nik
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	~

Inhalte und Qualifikationsziele

- Grundlagen zu Kunststoffen (2)
- Verarbeitungsverfahren mit Schwerpunkt Spritzguss (2)
- Aufbau von Spritzgusswerkzeugen (1)
- Anforderungen an Kunststoffe im Umfeld der Medizintechnik (3)
- Aufbau, Eigenschaften und Anwendung wichtiger Polymere (3)
- Messgrößen (z.B: Elastizitäsmodul, MVR etc.) zu Kunststoffen und deren Interpretation (3)

Lernziele: Fachkompetenz

- Aufbau und Eigenschaften von Kunststoffen der Medizintechnik einzuschätzen (3)
- Eine Werkstoffauswahl im medizinischen bzw. pharmazeutischen Umfeld zu treffen (3)
- Spritzgießgerecht Kunststoffbauteile zu konstruieren (2)
- Erfordernissen aus Werkzeugbau und Fließverhalten der Kunststoffe zu kennen (1)
- eine Verbindungstechnik auszulegen (2)
- Die Verwendbarkeit eines Polymers für einen Anwendungsfall richtig einzuschätzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Interdisziplinär mit anderen Kompetenzfeldern (Simulation, Werkzeugbau, Belange der Massenproduktion) agieren zu können (2)
- Verständnis für Anforderungen an Kunststoffe aus dem pharmazeutischen und regulatorischem Umfeld (3)

Angebotene Lehrunterlagen

pdf Folien der Vorlesung

Lehrmedien

Rechner/ Beamer, Exponate

Literatur

Saechtling, Kunststoff Taschenbuch, Hanser Verlag Weitere Literatur siehe Veranstaltung

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Regelwerke für Medizinprodukte		RFM
(Guidance and Standards for Medical Devices)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Max Singh	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.		Schwerpunkt Pflichtmodul	5

Verpflichtende Voraussetzungen		
keine		
Empfohlene Vorkenntnisse		
Grundlagen des europäischen Medizinprodukterechtes		

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Regelwerke für Medizinprodukte	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Regelwerke für Medizinprodukte		RFM
(Guidance and Standards for Medical I	Devices)	
Verantwortliche/r	Fakultät	
Prof. Dr. Max Singh	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Max Singh	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	4 SWS	deutsch/englisch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung
Studienarbeit mit Präsentation
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte und Qualifikationsziele

Im Rahmen der Veranstaltung werden die Kenntnisse zu den regulatorischen Anforderungen für die Entwicklung und den globalen Marktzugang von Medizinprodukten in verschiedenen Regionen weltweit vermittelt. Mit Hilfe praktischer Beispiele werden die gesetzlichen Anforderungen erarbeitet und die Anwendung geübt.

Lernziele: Fachkompetenz

- Relevante internationale Normen und regulatorische Vorgaben für die Medizintechnik zu kennen, einschließlich der Zulassungsvorgaben der FDA (USA) und der Anforderungen der europäischen MDR 2017/745 (1)
- Die Struktur und Anforderungen der MDR sowie der wichtigsten Anhänge (I, II, III) zu verstehen und in spezifischen Fragestellungen anzuwenden (2)
- Globale regulatorische Anforderungen, einschließlich der Zulassungsvorgaben der FDA und der MDR-Vorgaben, zu analysieren und deren Bedeutung für die Medizinprodukteentwicklung zu erläutern (2)
- Klassifizierungsfragen und verschiedene Interpretationen der regulatorischen Vorgaben zu bewerten und Lösungsvorschläge zu entwickeln (2)
- Die Bedeutung der Klinischen Bewertung nach globalen Standards zu verstehen und deren Konsequenzen zu erkennen (2)

- Konformitätsbewertungsverfahren in der EU und die Marktbeobachtungsanforderungen für wichtige Märkte zu planen und anzuwenden (3)
- Die relevanten Anhänge der MDR in Fallstudien praktisch zu integrieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ein fundiertes Verständnis für regulative Anforderungen in der Medizinprodukteentwicklung zu entwickeln und dieses verständlich an fachfremde Personen zu vermitteln (2)
- den normgerechten Aufbau der Technischen Dokumentation zu erarbeiten (2)
- relevante globale Vorgaben und Gesetze für Medizinprodukte in praktischen Fallstudien anzuwenden (3)
- die Anforderungen internationaler Anforderungen an Medizinprodukte, Hersteller und andere Wirtschaftsakteure zu benennen, auszuwählen und exemplarisch anzuwenden sowie zu präsentieren (3)

Angebotene Lehrunterlagen

Relevante Gesetzestexte, Vorschriften und Normen

Lehrmedien

Rechner/Beamer; Tafel; Flipchart; ELO; ViMP

Literatur

Wird zu Vorlesungsbeginn bekanntgegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez	. oder Nr.
Versuchstechnik und Datenanalyse mit Praktikum (Experimental Techniques and Data Processing with Laboratory Exercises)		VTD	
Modulverantwortliche/r	Fakultät		
Prof. Dr. Sebastian Dendorfer	Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.		Schwerpunkt Pflichtmodul	5

Verpflichtende Voraussetzungen		
keine		
Empfohlene Vorkenntnisse		
keine		

Inhalte			
siehe Teilmodul			

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Versuchstechnik und Datenanalyse mit Praktikum	4 SWS	5

Teilmodul	TM-Kurzbezeichnung	
Versuchstechnik und Datenanalyse mi	t Praktikum	VTD
(Experimental Techniques and Data P Exercises)	rocessing with Laboratory	
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Sebastian Dendorfer	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Praktikum	1	

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
german eranar prant	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung	
Studienarbeit mit Präsentation	
Zugelassene Hilfsmittel für Leistungsnachweis	
k. A.	

Inhalte und Qualifikationsziele

In diesem Modul entwickeln und präsentieren die Studierenden einen Forschungsantrag für eine aktuelle wissenschaftliche Fragestellung. Der Fokus der Antragsstellung liegt auf der Planung der Versuche und der Datenanalyse. Eventuell anfallende Vorversuche werden nach Einführung eigenständig im Labor durchgeführt. Die Anträge werden nach Fertigstellung einem Gremium präsentiert und diskutiert.

Thematisch werden diese Punkte behandelt:

- Bearbeiten eines komplexen wissenschaftlichen Problems mit den Fokus auf die Versuchstechnik und Datenanalyse
- Planung von numerischen und experimentellen Versuchsreihen
- Entwicklung von Konzepten zur Analyse von numerischen und experimentellen Daten
- Erstellen von Versuchsplänen und Protokollen
- Selbstständiges wissenschaftliches Arbeiten
- Strukturierung von Versuchsreihen
- Verifizierung und Beurteilung von Methoden
- Verifizierung und Beurteilung von Ergebnissen
- Kennenlernen von verschiedenen Messsystemen zur Erfassung von physiologischen, kinetischen und kinematischen Größen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Wissenschaftliche Hypothesen zu erarbeiten (2)
- Versuchspläne zu erstellen (2)
- Wissenschaftliche Recherchen durchzuführen (2)
- Problemlösungen zu diskretisieren
- Methoden zu beschreiben (2)
- Datenanalysen zu diskutieren (3)
- Experimente selbstständig durchzuführen (2)
- Wissenschaftliche Anträge zu formulieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Projektanträge und -pläne in interdisziplinären Teams zu entwickeln (2)
- Projektfortschritte mit den Teammitgliedern abzustimmen (2)
- Den Daten- und Informationsfluss im Team zu steuern (2)
- Protokolle, Arbeitsfortschritte und Ergebnisse zu präsentieren und diskutieren (3)
- Kritisch methodische Ansätze zu beurteilen (2)

Angebotene Lehrunterlagen

Folien, Literatur, Videos, Handbücher

Lehrmedien

Tafel, Rechner/Beamer, Rechnerarbeitsplätze, Prüfstände, Labor

Literatur

- Siebertz, van Bebber, Hochkirchen; Statistische Versuchsplanung, Springer Verlag
- Berger, Maurer, Celli; Experimental Design, Springer Verlag

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Vertiefung Qualitätsmanagement		VQM
Modulverantwortliche/r	Fakultät	
Prof. Dr. Claudia Hirschmann	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. oder 2.		Schwerpunkt Wahlpflichtmodul	5

Verpflichtende Voraussetzungen			
keine			

Inhalte		
siehe Teilmodul		

	Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
			[SWS o. UE]	[ECTS-Credits]
Ī	1.	Vertiefung Qualitätsmanagement	4 SWS	5

Teilmodul	TM-Kurzbezeichnung		
Vertiefung Qualitätsmanagement		VQM	
Verantwortliche/r	Fakultät		
Prof. Dr. Claudia Hirschmann	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Claudia Hirschmann Dr. Matthias Spickenreuther (LB)	jedes 2.Semester		
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. o. 2.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung
mündliche Prüfung, 20 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
keine

Inhalte und Qualifikationsziele

- Bedeutung und Ausprägung des Themas "Process Management" in der Praxis, in Qualitätsmanagementsystemen, in der Normenreihe ISO 9000ff, ggf. in weiteren gängigen Normen, im Total Quality Management (TQM), EFQM, in CMMI, SPICE, etc.
- ggf.: Bedeutung des Prozessmanagements aus verschiedenen Blickwinkeln und in verschiedenen Branchen
- Aufgaben des operativen und strategischen Prozessmanagements, Elemente des und Schritte im Prozessmanagement, Formen der Prozessorganisation
- Grundlagen von Prozessen: Prozessarten, -typen, -ebenen, Meilensteine, Quality-Gates, Schnittstellen, gängige Prozess-Darstellungen (z.B. Prozesslandkarte, SIPOC, etc.) und Modellierung, Dekomposition, etc.
- Prozessbewertungen: gängige Kennzahlen, Prozess-Audits, -Assessments, Balanced Score Card, Reviews, Qualitätsregelkarten mit Bewertung, Prozessfähigkeitsuntersuchungen mit Kennzahlen
- Prozessmodelle, Referenzmodelle, Reifegradmodelle, jeweils mit Beispielen, z.B. SCOR, etc.
- EFQM Modell mit RADAR-Bewertungssystematik
- Nachhaltige Entwicklungsziele der VEreinten Nationen (UN SDGs) und EFQM "Lenses"
- CMMI-Modelle, CMMI-DEV, CMMI-Aufbau, -Bewertungssystematik, -Appraisals
- SPICE, SPICE-Aufbau, -Bewertungssystematik
- Prozessverbesserung: Methoden zur Analyse der Problem-Ursache-Kausal-Zusammenhänge (z.B. Ishikawa-Diagramm mit 8M, 5-W-Methode, Pareto- Diagramm, z.B. ggf. auch Engpasstheorie, Systems Thinking, etc.) einschließlich der Prozess-Analyse hinsichtlich Nachhaltigkeit (System Denken, Denken in Kreisläufen, etc.),
- Methoden zur Prozessverbesserung bzgl. Struktur, Abläufen, etc. (z.B. gängige Prozess-Gestaltungsprinzipien, Poka Yoke, 5s-Methode, PDCA, etc., ggf. Lean); Methoden zum Prozessänderungsmanagement (Change Management, ggf.: agile Methoden), Ansätze und Modelle zur Prozess-Gestaltung und zum Change Management hinsichtlich der Herausforderungen rund um das Thema Nachhaltigkeit
- Grundlagen zu den Themen der Statistischen Versuchsmethodik: Schwerpunkt Design of Experiments (DoE) mit Überblick über die verschiedenen Methoden
- statistische Grundlagen zu DoE: Vorgehensweise der Statistik, deskriptive und induktive Statistik, Grundprinzip der Hypothesentests, Fehler 1. u. 2. Art; wichtige Hypothesentests: T-Test, F-Test, ANOVA
- klassische Versuchsmethodik (DoE Design of Experiments): Vollständige und unvollständige Versuchspläne, Vermengungsstrukturen, Blockbildung und Randomisierungen, Signifikanz von Wirkungen und Wechselwirkungen, zentral zusammengesetzte Versuchspläne
- Digitalisierung und ihre Auswirkung auf die Themen Prozessmanagement, Statistische Versuchsmethodik und DoE, Safety, Security

Lernziele: Fachkompetenz

- Grundlagen des Process Managements und die Bedeutung dessen aus verschiedenen Blickwinkeln zu nennen und einzuschätzen (3)
- operative und strategische Aufgaben des Process Managements zu planen, auszuführen und darzustellen (3)
- komplette Prozessbeschreibungen und Verfahrensanweisungen zu erstellen, zu analysieren und zu bewerten (3); Dekomposition von Prozess-Ebenen auszuarbeiten und

- zu analysieren (3); geeignete Prozess-Darstellungen (z.B. Prozesslandkarte, SIPOC, etc.) auszuwählen, auszuarbeiten, zu bewerten, zu interpretieren und zu empfehlen (3)
- Prozessbewertungen anhand gängiger Kennzahlen, Prozess-Audits, -Assessments, Reviews, Qualitätsregelkarten mit Bewertung, Prozessfähigkeitsuntersuchungen mit Kennzahlen auszuarbeiten, zu analysieren, zu beurteilen und darzustellen (3)
- Prozessmodelle nach Kriterien aus ISO 9001, ISO 9004, EFQM, CMMI, SPICE, SCOR zu beurteilen (3), die Organisation von Prozessen und Prozessorganisationen zu beurteilen (3)
- das EFQM Modell und die RADAR Systematik für verschiedene Szenarien anzuwenden, auszuarbeiten und zu bewerten (3), Selbstbewertung eines Betriebs anhand des EFQM Modells durchzuführen, zu untersuchen und dazu die Prozessreife zu analysieren und zu beurteilen (3)
- CMMI samt Bewertungssystematik für Szenarien aufzustellen, zu entwickeln, auszuarbeiten, zu bewerten und darzustellen (3)
- die Weiterentwicklung von Unternehmen hinsichtlich CMMI zu analysieren, zu beurteilen, einzuschätzen, zu empfehlen und darzustellen (3)
- Vergleich verschiedener Reifegradsystematiken (z.B. SPICE, CMMI, EFQM, etc.) auszuarbeiten und zu bewerten (2)
- Verbesserungspotentiale von Prozessen und Weiterentwicklung von Unternehmen anhand Methoden zur Analyse der Problem-Ursache-Kausal-Zusammenhänge zu untersuchen, zu analysieren, auszuarbeiten, einzuschätzen und zu empfehlen (3), Methoden zur Prozessverbesserung und Methoden zum Prozessänderungsmanagement anzugeben, situativ geeignete auszuwählen, auszuarbeiten, auszuführen und zu empfehlen (3)
- Grundlagen des Design of Experiments zu nennen (1)
- effektive und effiziente Planung und Durchführung von Versuchen in Entwicklung und Produktion auszuarbeiten und zu beurteilen (3)
- Systeme, die sich zum Einsatz von Versuchsmethodik eignen, auszuwählen, zu identifizieren, handzuhaben, auszuführen, zu bewerten und zu empfehlen (3)
- geeignete Versuchsplänen zu erstellen, auszuarbeiten, auszuführen, zu interpretieren und zu bewerten (3)
- Software zur Unterstützung des DoE anzugeben, einzuschätzen und auszuwählen (2)
- systematische Versuchspläne zur Optimierung von Prozessen und Produkten zu evaluieren (3)
- Versuchsergebnisse auf statistisch fundierter Basis korrekt zu interpretieren (3) und darauf aufbauend fundierte Entscheidungen zu entwickeln, auszuarbeiten, zu evaluieren und zu empfehlen (3)
- wissenschaftliche schriftliche Ausarbeitungen und Diskussionen in simulierten Praxissituationen, z.B. anhand Fallstudien-Arbeit, auszuführen, auszuarbeiten und darzustellen (3)
- die Rolle statistischer Gesetzmäßigkeiten bei Planung und Durchführung von Versuchen anzugeben, zu bewerten und darzustellen (3), sowie mögliche Folgen von vor diesem Hintergrund getroffenen Entscheidungen (quantifizierbares Restrisiko) zu beurteilen und darzustellen (3)

Lernziele: Persönliche Kompetenz

- komplexe Projekte im Prozessmanagement und bezüglich DoE unter Einbeziehung aller Interessenspartner zu planen und als Projektleiter erfolgreich auszuführen (2)
- ethisch überlegte Entscheidungen im Prozessmanagement mit dem Bewusstsein übergreifender globaler Auswirkungen der Entscheidungen und des Handelns auszuarbeiten, zu evaluieren, darzustellen und vorzuschlagen (3)

- Originalmaterial in englischer Sprache handzuhaben und zu benutzen (2)
- durch eigenes "Lernen durch Lehren" im Bereich VQM sich selbstverantwortlich weiterzuentwickeln, verschiedene VQM-Themen (ggf. z.B. in Referaten) darzustellen und im Hinblick auf zukünftige Aufgaben der Arbeits- und Lebenswelt zu reflektieren und zu beurteilen (3)
- Verantwortung und Aufgaben in der Prozessmanagement-Führung für die systematische sachgerechte Weiterentwicklung eines Unternehmens (z.B. anhand von Fallbeispielen) zusammenzustellen, einzuschätzen, abzuwägen und darzustellen (3).
- Verantwortung und Aufgaben in einer Prozessmanagement-Führung strategischer und operativer Art für ein Unternehmen und aus globaler Sicht zusammenzustellen, einzuschätzen und darzustellen (3)
- Aufgaben in einer Prozessmanagement-Führung in interdisziplinären Projekten und Rolle des Prozessmanagements in der Produktion, in Projekten, im Unternehmen und unternehmensübergreifend zusammenzustellen, die Interessen anderer zu erkennen und aus Sicht der Rolle zu reflektieren (2)
- ihre eigene Verantwortung für sichere und regularienkonforme, effektive und effiziente Prozesse von guter Qualität und deren Auswirkungen anzugeben und einzuschätzen (3)
- fachübergreifende Auswirkungen ihres Handelns unter Berücksichtigung von Technikfolgen bezüglich Qualität und Prozessmanagement zu nennen und einzuschätzen (3)
- sachgerechte Positionen zum Prozessmanagement und DoE in Planungs- und Entscheidungsprozesse einzubringen und unter Erkennung und Reflexion der Meinungen anderer abzuwägen und zu diskutieren (3)
- konstruktive und sachlich begründete Anregungen hinsichtlich Prozessmanagement und DoE z.B. in Produktentwicklung einzubringen, abzuwägen und zu diskutieren (3)
- statistische Gesetzmäßigkeiten bei Planung und Durchführung von Versuchen anzugeben, sowie mögliche Folgen von vor diesem Hintergrund getroffenen Entscheidungen (quantifizierbares Restrisiko) zu beurteilen und anderen darzustellen und zu erklären (3)

Angebotene Lehrunterlagen

Skript, Englisch-sprachiges Originalmaterial

Lehrmedien

Rechner/Beamer, Videos, professionelle Software, Tafel, Overheadprojektor

Literatur

- Best/Weth: Process Excellence. Praxisleitfaden für erfolgreiches Prozessmanagement, Gabler.
- Box/Hunter/Hunter: Statistics for Experimenters, Wiley.
- CMMI Product Team: CMMI® for Development, Carnegie Mellon.
- EFQM: The EFQM Model, www.efqm.org
- ISO/IEC 33020 Information technology Process assessment Process measurement framework for assessment of process capability
- Kern(Herausgeber): Prozessmanagement individuell umgesetzt, Springer.
- Klappmann: Versuchsplanung: Produkte und Prozesse optimieren, Hanser.
- Klein: Versuchsplanung DoE: Einführung in die Taguchi/Shainin-Methodik, De Gruyter.
- Lunau/Meran/John/Stadter/Roenpage: Six Sigma+Lean Toolset, Springer Gabler.
- Montgomery: Design and Analysis of Experiments, Wiley.
- Seidlmeier: Prozessmodellierung mit ARIS®, Springer.
- Spenhoff: Prozess-Sicherheit II. Statistische Versuchsplanung für Ingenieure in Produktund Prozessentwicklung, GRIN.
- Wilrich/Henning/Graf/Stange: Formeln und Tabellen der angewandten mathematischen Statistik, Springer.

Weitere Informationen zur Lehrveranstaltung

Das Modul wird in Blockform oder wöchentlich oder gemischt (teils in Blockform, teils wöchentlich) angeboten. Teile des Moduls können durchaus interaktiv gestaltet sein. Das Modul kann auch von Studierenden der Studiengänge MMB, MMT und MAPR besucht werden!